對 DeepSeek 我的一些想法

對 DeepSeek 我的一些想法

過年期間 DeepSeek 的新聞幾乎霸佔了多數媒體的版面,直到現在,我個人的 Facebook 與常看的一些媒體、部落格也還經常看到 DeepSeek 的相關討論。

由於前段時間我人在韓國旅行,沒有太多的時間深入細節看 DeepSeek 的資料,尤其是有部分內容涉及到較深入的技術細節,沒看懂的狀況下實在也不好亂說。

回台灣這幾天終於有點時間可以好好看一下資料,以下我大概整理了一些觀點供大家參考。


DeepSeek 的技術創新

DeepSeek 揭露的資訊中提到 DeepSeek-V3 的訓練成本大約是 OpenAI 的 1/10 不到。主因是 DeepSeek 在技術架構中實現了以下創新。

  1. 混合專家(Mixture-of-Experts, MoE)架構:DeepSeek-V3 擁有 6,710 億參數,但在實際運行中,每個輸入僅激活 370 億參數,這種選擇性激活的方式大大降低了計算成本,同時保持了高效能。
  2. 無輔助損失的負載平衡策略(auxiliary-loss-free load balancing strategy):這不是新東西,但核心概念是最小化因負載平衡對模型運行效能的負面影響。簡單的說,傳統的負載平衡有多餘的浪費,這套方法則可大大減少浪費。
  3. 多頭潛在注意力(Multi-Head Latent Attention, MLA):MLA 通過低秩聯合壓縮技術(Low-Rank Key-Value Joint Compression),減少了推理時的鍵值(Key-Value, KV)快取,能在維持效能的同時顯著降低了記憶體佔用,進而實現更高效的訓練和推理。
  4. 多 token 預測模型(Multi-Token Prediction Model):傳統的 token 處理是循序式的,也就是第 N+1 個 token 是根據第 N 個 token 來處理,而多 token 模式則是同時對多個 token 展開處理,此策略提升了模型的整體效能表現。但我個人的疑慮是會占用更多的運算資源。
  5. 高效率的訓練架構:採用HAI-LLM 框架,支援16-way Pipeline Parallelism(PP)、64-way Expert Parallelism(EP)和ZeRO -1 Data Parallelism(DP),並透過多種最佳化手段降低了訓練成本。

上面這些是 DeepSeek 在 V3 版本所提出的關鍵創新,其中MoE 架構無輔助損失的負載平衡策略算是早就存在的技術,不過 DeepSeek 將其運用在技術架構中,顯著提升了效能。而多 token 預測模型其實是 Meta 先提出並開源的解決方案。

多頭潛在注意力則是在 NLP 的 transform 模型中早就有人使用技術,或許也稱不上是由 DeepSeek 首創。但值得注意的是 DeepSeek 有能力在將這項技術加以改良並應用在現行產品上。

看到這,或許你會覺得我想告訴大家 DeepSeek 並沒有什麼了不起的創新,因為他們只是用了別人的技術。

但我的觀點正好相反,每次看到這類將既有技術整合後實現創新的案例,總會讓我想到賈伯斯說過的一段話:「好的藝術家懂複製,偉大的藝術家則擅偷取。

也有人彙整了賈伯斯的概念提出「創新即借用與連結」這樣的觀點。

當 iPhone 被推出時,市場上雖然震驚,但也有很多人說其實 iPhone 並沒有什麼原創技術,大多的技術都已存在一段時間,賈伯斯只是發揮創意,將這些技術整合,進而實現應用創新

這就是所謂的借用與連結

現在,不會有人說賈伯斯沒什麼了不起,因為他確實顛覆了人們看待電話與電腦的習慣,引領了整個行動網路年代。


創新的要件

在 2023 年我曾在工研院分享過 OpenAI 的成功軌跡。當時我提到「OpenAI 的成功,很大一部分跟時機有關。」

為什麼我這麼說呢?

在實現 GPT-4 這項劃時代的創新時,如果不是晶片技術雲端運算服務的成熟,空有演算法並無法解決運算速度的問題。所以這些技術是支撐 GPT-4 的技術基礎建設

但真正讓 OpenAI 為世人所看見,並能在短短的兩年多的時間風靡全球,成為當前最熱門的科技議題,ChatGPT 功不可沒。先進的技術,如果不能普及到世人的生活中,發展的速度通常非常慢

ChatGPT 建構了一個所有使用者都可以輕易互動的介面,而且能回答的問題也不局限於特定專業領域,讓所有使用者都能輕易上手。這種能讓創新迅速普及的應用情境非常關鍵。

如果沒有 ChatGPT,OpenAI 現在可能只是間技術很先進的公司,但因為 ChatGPT 這個有趣的應用,當年便成為有史以來使用者人數成長最快的應用。

而往後的每間 AI 公司其實也努力的複製這種模式,因為搶占市場最快的方法是提供一個簡單易入手的應用,並讓大家在使用這個應用的過程產生快感(AHA monent)

這個段落我簡單總結一下,這個年代的創新很難是橫空出世,絕大多數都要奠定在既有的技術基礎建設,並在這個基礎上做出一定程度的創新,並建構一個能讓創新普及的應用

OpenAI 如此,DeepSeek 也是如此。

而在上面這張圖中,我同時也提到了更快的效能與更低的成本。這其實是所有企業不變的追求。OpenAI / DeepSeek 都在這兩塊上努力,只是 OpenAI 可能更偏重效能,而 DeepSeek 則是更看重後者。


DeepSeek 的真正價值,讓更多 AI 應用創新發生

OpenAI 引領了 AI 的浪潮,研發方向朝向更大規模的算力,更大量的數據,更複雜的模型,投入更多的資源。而 DeepSeek 則試著更小,更輕薄,更低成本。兩者的思考路線不同,但在解決的核心問題其實都是讓 AI 更普及,更為世人所用。

OpenAI 的模式,自然會需要持續墊高硬體資源,而這也是 NVIDIA 的重要性會愈來愈高的原因之一。而 DeepSeek 則反其道而行,即便擺脫不了對硬體的依賴,但已經大幅降低對硬體的需求。

這兩種不同切入路線,也讓我想到距今近 20 年的科技發展。早年企業為了獲取更多的運算資源時,會傾向建置大型主機,但大型主機建置與維護的成本超級高,根本不是一般企業能負擔得起。所以在那個年代,運算資源的取得超級昂貴,許多的應用創新也因此受限

研發與生產大型主機的企業,在那個時代壟斷了算力。但方法是人想出來的,後來開始有人提出分佈式運算的架構,讓相對低階的硬體,可以透過分工的方式來完成複雜運算,並結合虛擬化技術讓運算資源的分配可以某種程度由軟體決定,而這也是雲端運算底層的架構之一。

看到這,我想大家應該也能想像到,OpenAI 做的事比較像傳統大型主機企業在做的事,而 DeepSeek 則是朝向早期分佈式運算架構解決方案的廠商在做的事。

分佈式運算架構進一步催生了雲端運算(cloud computing)年代,讓運算資源的取得變得容易且便宜,進而讓更多的 SaaS(Software as a Service)應用蓬勃發展

DeepSeek 則是讓 AI 資源的取得變得更容易且便宜,肯定也能促進 AI 應用的蓬勃發展。

我們可以想像,當建置與取得成本變成 1/10 時,將會有多少原先裹足不前的企業開始投入。我們甚至可以預見,有價值的創新將會以百倍的速度發展開來。

而我相信,這將會是 DeepSeek 帶來的最大價值。


DeepSeek 的爭議不重要嗎?

在談論 DeepSeek 的議題時,有些人會著重於談論技術嫖竊與安全性問題。也就是透過蒸餾 OpenAI 的數據來獲取自己的數據,以及數據會回傳中國的議題。也有人提到 DeepSeek 可能造假,或者運用對自己有利的方式來美化測試數據。又或者提到 DeepSeek 的成本其實只有模型建置成本,但沒有將整體研發成本計算進去等等。

這些議題,對個人來說重要性其實沒那麼高,因為你可以選擇不使用它的服務。就像政府機構禁用 DeepSeek,你也可以選擇不用 DeepSeek 的公開服務。

但既然 DeepSeek 已經開源了,那你大可站在他們的肩膀上做研究,而不要重頭開始造輪子。深入了解一下他們在 MoE、MLA 跟負載均衡上的創新,也學習一下它們如何將這些現行技術加以整合後創造新應用。

我們可以有自己的觀點去評論這些有爭議的部分,但我更建議可以從學習的角度思考。看看 DeepSeek 有哪些技術思路是我們可以借鑑,增廣自己創新的眼界,站在別人肩上思考。


從事研發與產品開發工作這麼多年來,多數時刻我都在做技術應用與整合上的創新,真正純技術創新(業界首創或專利型)比例其實沒那麼高,或許只占整體比例的 20% 不到。

台灣乃至全球的多數企業,真正競爭的場合,其實也是在應用而非底層技術上。純技術的競爭,大多是由技術大廠所驅動,而我們多數人,一定要把握的則是技術應用上的創新

如果你覺得我內容寫得還不錯,歡迎訂閱我的電子報,我每雙週會發送一封電子報到你的信箱。訂閱連結在這,過往的電子報也在這:Gipi電子報

也鼓勵你可以將我的電子報分享給你認為有需要的朋友們,也許你的舉手之勞,將會改變另一個人的思維與習慣。

Read more

給 B2B 新創的五個關鍵建議 - from Y Combinator  Anu Hariharan

給 B2B 新創的五個關鍵建議 - from Y Combinator Anu Hariharan

近期在輔導一家 B2B SaaS 公司,這個領域算是自己熟悉且擅長的,有很多的概念幾乎在每次的輔導與參與過程中都會提到,包含市場定位、定價、客戶服務、產品組合、銷售管理等議題。 這兩天剛好在 Youtube 上看到 Anu Hariharan 的這部影片,覺得很有共鳴,分享給大家。 影片中提到 B2B 新創應該留意的五件事: * 打磨產品:許多新創低估了擁有真正優良產品的重要性,並錯誤地將募資視為產品驗證。 * 訂價過低:大多數 B2B 新創在早期都存在訂價過低的問題,未能充分體現產品價值。 * 聚焦客群:市場新創公司應聚焦於特定的早期客戶群,而不是試圖服務所有 B2B 客戶。 * 銷售迴圈:創辦人應親自參與早期銷售,直到銷售流程變得重複且可預測,再考慮聘用銷售主管。 * 財務自足:公司應致力於實現「預設生存」,透過營收支持成長,減少對外部融資的依賴。 專注打磨產品 「許多新創公司通常認為募資是產品好或獲得認可的信號,這是大多數創辦人犯的第一個錯誤。」 產品是 B2B 企業規模化與生存的基礎,

By gipi
管理槓桿,讓管理變省力的 4 個重要技巧

管理槓桿,讓管理變省力的 4 個重要技巧

當管理者將時間花在正確的地方,他所花的一分力氣將會帶來多倍的效益。例如招募、教育訓練、會議、制度建立等等。 很多資深工作者即便擔任了多年的管理者仍然不懂得拿捏「自己做」與「指導別人做」之間的分際,導致有很多明明該由部屬完成的工作還是握在他手上,而整個團隊的工作效率也常常因為這樣的主管而出現瓶頸,這其實對團隊是非常不好的一件事。 管理者應該在哪些層面思考管理槓桿呢?除了培訓外,我認為最常見的有以下幾個部分。 招募,找到對的人 招募到對的人是第一步,你找來的人應該要能節省團隊的工作時間,而不是加重你的工作量,如果你找了一個能力不到位、態度不正確的人,你必須要花很多時間教他、管理他,在他工作出包時幫他收拾,當他鬧脾氣時花時間跟他溝通,當你手下有幾個這種人,你會疲於奔命。 在招募時,永遠要記得思考,這個人進來是能有效分擔部門與自己的工作量,還是反而給自己增加工作量。 一個專業能力中上水平的人,但態度負面愛抱怨,你需要花很多時間教育外,他還會影響團隊的氣氛;另一個則是專業能力一般,但態度積極認真有熱情,會主動share團隊工作,後者雖需花時間培訓,但相較於前者所花的管理時間,選後者

By gipi